国产自操久久,9999在线观看,日韩中文字幕,中文字幕精品视频在线,5151精品国产人成在线观看,狠狠色综合久久婷婷色天使 ,国产精品一区二区男人吃奶

三元一次方程組解法教學設計優(yōu)秀

時間:2021-07-02 14:36:52 教學設計 我要投稿

三元一次方程組解法教學設計優(yōu)秀范文

  教學目標:

三元一次方程組解法教學設計優(yōu)秀范文

  1.了解三元一次方程組的概念.

  2.會解某個方程只有兩元的簡單的三元一次方程組.

  3.掌握解三元一次方程組過程中化三元為二元的思路.

  教學重點:

  (1)使學生會解簡單的三元一次方程組

  (2)通過本節(jié)學習,進一步體會“消元”的.基本思想.

  教學難點:針對方程組的特點,靈活使用代入法、加減法等重要方法.

  教學過程:

  一、創(chuàng)設情景,導入新課

  前面我們學習了二元一次方程組的解法,有些實際問題可以設出兩個未知數(shù),列出二元一次方程組來求解。實際上,有不少問題中會含有更多的未知數(shù),對于這樣的問題,我們將如何來解決呢?

  【引例】小明手頭有12張面額分別為1元,2元,5元的紙幣,共計22元,其中1元紙幣的數(shù)量是2元紙幣數(shù)量的4倍,求1元,2元,5元紙幣各多少張.

  提出問題:1.題目中有幾個條件?2.問題中有幾個未知量?3.根據(jù)等量關(guān)系你能列出方程組嗎?

  【列表分析】

  (三個量關(guān)系) 每張面值 × 張數(shù) = 錢數(shù)

  1元 x x

  2元 y 2y

  5元 z 5z

  合 計 12 22

  注 1元紙幣的數(shù)量是2元紙幣數(shù)量的4倍,即x=4y

  解:(學生敘述個人想法,教師板書)

  設1元,2元,5元的張數(shù)為x張,y張,z張.

  根據(jù)題意列方程組為:

  【得出定義】 (師生共同總結(jié)概括)

  這個方程組有三個相同的未知數(shù),每個方程中含未知數(shù)的項的次數(shù)都是1,并且一共有三個方程,像這樣的方程組叫做三元一次方程組.

  二、探究三元一次方程組的解法

  【解法探究】怎樣解這個方程組呢?能不能類比二元一次方程組的解法,設法消去一個或兩個未知數(shù),把它化成二元一次方程組或一元一次方程呢?(展開思路,暢所欲言)

  例1 .解方程組

  分析1:發(fā)現(xiàn)三個方程中x的系數(shù)都是1,因此確定用減法“消x”.

  分析2:方程③是關(guān)于x的表達式,確定“消x”的目標.

  【方法歸納】根據(jù)方程組的特點,由學生歸納出此類方程組為:

  類型一:有表達式,用代入法.

  針對上面的例題進而分析,例1中方程③中缺z,因此利用①、②消z,可達到消元構(gòu)成二元一次方程組的目的.

  根據(jù)方程組的特點,由學生歸納出此類方程組

  類型二:缺某元,消某元.

  教師提示:當然我們還可以通過消掉未知項y來達到將“三元”轉(zhuǎn)化為“二元”目的,同學可以課下自行嘗試一下.

  三、課堂小結(jié)

  1.解三元一次方程組的基本思路:通過“代入”或“加減”進行消元,把“三元”化為“二元”,使解三元一次方程組轉(zhuǎn)化為解二元一次方程組,進而轉(zhuǎn)化為解一元一次方程.

  即三元一次方程組 二元一次方程組 一元一次方程

  2.解題要有策略,今天我們學到的策略是:有表達式,用代入法;缺某元,消某元.

  四、布置作業(yè)

  1. 解方程組 你能有多少種方法求解它?

 

【三元一次方程組解法教學設計優(yōu)秀】相關(guān)文章:

方程組的解法教學設計11-25

三元一次方程組的解法09-13

三元一次方程組的解法教學反思04-24

課文《三元一次方程組的解法》教學反思11-24

課文《三元一次方程組的解法》教學反思范文02-11

公開課《三元一次方程組的解法舉例》反思范文08-17

七年級數(shù)學《三元一次方程組的解法》教學反思07-12

初中代數(shù)二元一次方程組的解法教學設計12-30

二元一次方程組的解法教學反思11-24

安吉县| 平塘县| 清远市| 乃东县| 北宁市| 玛纳斯县| 白沙| 三明市| 乐昌市| 淮南市| 安达市| 商水县| 五华县| 通道| 吉林市| 会宁县| 新建县| 西充县| 巴马| 南投市| 新和县| 吴桥县| 巴中市| 绥化市| 广平县| 岳阳县| 淅川县| 吉首市| 澄江县| 南阳市| 即墨市| 祁阳县| 肥城市| 永城市| 海盐县| 台中市| 栾城县| 临海市| 枣阳市| 康马县| 宜城市|