sin(kπ+α)=(-1)ksinα(k∈Z);
cos(kπ+α)=(-1)kcosα(k∈Z);
tan(kπ+α)=(-1)ktanα(k∈Z);
cot(kπ+α)=(-1)kcotα(k∈Z)。">

国产自操久久,9999在线观看,日韩中文字幕,中文字幕精品视频在线,5151精品国产人成在线观看,狠狠色综合久久婷婷色天使 ,国产精品一区二区男人吃奶

高中三角函數(shù)解題模型及技巧

回答
瑞文問答

2024-07-21

見“給角求值”問題,運用“新興”誘導公式 一步到位轉換到區(qū)間(-90o,90o)的公式.
sin(kπ+α)=(-1)ksinα(k∈Z);
cos(kπ+α)=(-1)kcosα(k∈Z);
tan(kπ+α)=(-1)ktanα(k∈Z);
cot(kπ+α)=(-1)kcotα(k∈Z)。

擴展資料

  見“sinα±cosα”問題,運用三角“八卦圖”

  1.sinα+cosα>0(或<0)óα的終邊在直線y+x=0的上方(或下方);

  2. sinα-cosα>0(或<0)óα的終邊在直線y-x=0的上方(或下方);

  3.|sinα|>|cosα|óα的終邊在Ⅱ、Ⅲ的區(qū)域內(nèi);

  4.|sinα|<|cosα|óα的終邊在Ⅰ、Ⅳ區(qū)域內(nèi)。

  見“知1求5”問題,造Rt△,用勾股定理,熟記常用勾股數(shù)(3,4,5),(5,12,13),(7,24,25),仍然注意“符號看象限”。

  “見齊思弦”=>“化弦為一”:已知tanα,求sinα與cosα的齊次式,有些整式情形還可以視其分母為1,轉化為sin2α+cos2α.

平罗县| 侯马市| 美姑县| 安岳县| 四平市| 湛江市| 孟津县| 陆河县| 沅陵县| 军事| 博白县| 乐陵市| 大庆市| 井冈山市| 沙洋县| 富宁县| 永泰县| 广东省| 松阳县| 兴安县| 溧阳市| 林周县| 贵港市| 宁蒗| 长兴县| 靖西县| 江都市| 无为县| 寻甸| 莱州市| 宝鸡市| 温宿县| 营山县| 中卫市| 沂源县| 察哈| 龙州县| 克山县| 五指山市| 宁德市| 奇台县|