国产自操久久,9999在线观看,日韩中文字幕,中文字幕精品视频在线,5151精品国产人成在线观看,狠狠色综合久久婷婷色天使 ,国产精品一区二区男人吃奶

三角形內(nèi)切圓的性質(zhì)

回答
瑞文問答

2024-08-31

與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形,三角形的內(nèi)心是三角形三條角平分線的交點(diǎn)。

擴(kuò)展資料

  性質(zhì)

  三邊與圓相切

  圓心與三頂點(diǎn)連線分辨平分三角

  半徑x三邊和/2=三角形面積

  三角形內(nèi)切圓概念

  三角形一定有內(nèi)切圓,其他的圖形不一定有內(nèi)切圓(一般情況下,n邊形無內(nèi)切圓,但也有例外,如對(duì)邊之和相等的四邊形有內(nèi)切圓。),且內(nèi)切圓圓心定在三角形內(nèi)部。

  在三角形中,三個(gè)角的角平分線的交點(diǎn)是內(nèi)切圓的圓心,圓心到三角形各個(gè)邊的垂線段相等。

  內(nèi)切圓的半徑為r=2S/C,當(dāng)中S表示三角形的面積,C表示三角形的周長。

  三角形內(nèi)切圓半徑公式

  1、三角形內(nèi)切圓半徑:r=2S/(a+b+c);

  2、三角形外接圓的半徑:R=abc/4S。

  其中,S為三角形的面積,a,b,c分別為三角形的三邊。

丹寨县| 西林县| 舒城县| 石阡县| 五华县| 云浮市| 九江县| 博罗县| 芦山县| 育儿| 咸宁市| 永善县| 龙陵县| 沙坪坝区| 富顺县| 从化市| 泸溪县| 织金县| 宜兴市| 建瓯市| 郸城县| 慈利县| 通许县| 霍州市| 会昌县| 天长市| 龙陵县| 含山县| 泗阳县| 吉隆县| 阳曲县| 内黄县| 天祝| 都昌县| 调兵山市| 九龙县| 江门市| 惠东县| 辽宁省| 彭山县| 淳化县|